Snowflake account managers need their fingers on the pulse of which workload shifts or performance optimizations could improve customer experience. Yet without an all-encompassing view of their customers, sales teams have to piece together customers’ wants and needs through duplicate CRM accounts and various BI tools and dashboards.
That’s why Snowflake is developing a natural language processing (NLP) app to equip our own sales team with a multi-dimensional view of customer accounts, including factors such as account consumption patterns, overall account health, account engagement, and trends of Snowflake feature usage.
The app’s first version is powered by an Azure-based GPT-4 trained on the table names of all of our Snowflake internal sales intelligence. The large language model (LLM) is able to learn terminology variations presented across the tables through the comment fields of the columns. So if there is a column with a record of all account managers called ACCT_MGR, we annotate its comment field with “account manager aka account executive (AE) aka sales rep” to ensure the LLM recognizes all variations.
We plan to track engagement — from the email correspondence between account managers and customer support to the list of attendee titles of any meeting. The model also takes into account which Snowflake team members were involved in the sales process from technical field experts to product executives such as our SVP of Product. The more sales interactions ingested alongside data of Snowflake consumption, the smarter it will become.
With a chatbot interface, our sales teams can dive into the specifics of any territory or account with a simple question — for example, “What are my fastest growing accounts?” One of the shifts we’re seeing with generative AI is a divide in who can benefit: people who know how to ask the right questions versus those who don’t. We don’t expect everyone to be prompt engineers, so the chatbot overlays a contextualized (via in-context learning) GPT-4-based LLM that can effectively answer the question, whether it’s worded well or not. As its own LLM layer, the chatbot will continue to grow more intuitive with time.
Once an account manager uses the app to identify underperforming accounts, they can ask for recommendations on the type of engagement activity that will deliver the most impact — or what we call a nudge, aka the output of the app’s ML algorithm. It understands which actions have taken place in the account and suggests additional actions that could generate more consumption, such as a meeting with a specific stakeholder, offering engineering resources or introducing a new feature or data workload with an estimated ROI.
An added benefit is our ability to use this data to iterate on making Snowflake better. The app can help establish the friction points, so we can proactively help customers optimize Snowflake performance, or if it’s necessary, bubble repeat issues up to product managers as a feature development request.
In the name of optimal customer experience, Snowflake has long invested in consumption-based pricing. Customers can pay for what they use and get better value for their spending. Consumption-based pricing is often met with concerns that costs can spiral out of control, but that’s only if things are left unchecked. The LLM-powered chatbot will help identify opportunities for sales to help the customer implement cost monitoring and manage usage, including:
You can learn more about all the features and tools available for cost-effective use of Snowflake here.
We built the proof of concept in Python. With Snowflake’s Python connector and Snowpark — a set of libraries and runtimes that securely deploy and process Python and other programming languages in Snowflake — we seamlessly switch between SQL-based data injection and Python-based business logic implementation as needed. Then, we built a front-end chat interface using Streamlit in Snowflake.
The diagram below represents a high-level concept architecture of the ChatGPT-like app when a query is posed to Azure-based GPT-4:
Account managers will have a single source of data from which to know and serve their customers, helping them answer questions like:
At the leadership level, a sales executive can understand the overall health of their territory by answering:
Sales is on the hook for customer success, and this rapidly evolving app will help ensure that sales teams are armed with the most pertinent insights, sales leadership can provide guidance backed by data, and our customers reap all the benefits — as they should.
To learn how “sipping our own champagne” teaches us valuable lessons we can then share with you, check out our live webinar series, Snowflake on Snowflake.
The post Our Secret to Customer-First Account Management? Using an LLM-Powered Chatbot for Sales Teams appeared first on Snowflake.
Cybersecurity leader SonicWall has just released their 2025 outlook, including the threats, challenges and trends that will shape the sector […]
AI is proving that it’s here to stay. While 2023 brought panic and wonder, and 2024 saw widespread experimentation, 2025 […]
Earlier this year, Snowflake signed the Cybersecurity and Infrastructure Security Agency (CISA) Secure by Design pledge. As part of that […]